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ABSTRACT 
 
One of the most important issues in mechanized excavating is to predict the TBM penetration rate. Understanding the factors 
influencing the rate of penetration is important, which allows for a more accurate estimation of the stopping and excavating 
times and operating costs. In this study, Input and output parameters including Uniaxial Compressive Strength (UCS), Brazilian 
Tensile Strength (BTS), Peak Slope Index (PSI), Distance between Planes of Weakness (DPW), Alpha angle and Rate of 
Penetration (ROP) (m/hr) in the Queens Water Tunnel using support vector machine .Results showed that prediction of 
penetration rate for Support Vector Machine (SVM) method is R2 = 0.9678 and RMSE = 0.064778, According to the results, 
Support Vector Machine (SVM) is effective and has high accuracy. 
Keywords: TBM. Penetration rate. Support Vector Machine (SVM). 
 
RESUMO 
 
Uma das questões mais importantes na escavação mecanizada é prever a taxa de penetração do TBM. É importante 
compreender os fatores que influenciam a taxa de penetração, o que permite uma estimativa mais precisa dos tempos de 
parada e escavação e dos custos operacionais. Neste estudo, os parâmetros de entrada e saída incluem resistência à 
compressão uniaxial (UCS), resistência à tração brasileira (BTS), índice de inclinação de pico (PSI), distância entre planos de 
fraqueza (DPW), ângulo alfa e taxa de penetração (ROP) (m / hr) no túnel de água de Queens usando máquina de vetor de 
suporte. Os resultados mostraram que a previsão da taxa de penetração para o método SVM (Support Vector Machine) é R2 
= 0,9678 e RMSE = 0,064778. De acordo com os resultados, o SVM (Support Vector Machine) é eficaz e tem alta precisão. 
Palavras-chave: TBM. Taxa de penetração. Máquina de vetores de suporte (SVM). 
 
RESUMEN 
 
Una de las cuestiones más importantes en la excavación mecanizada es predecir la tasa de penetración de TBM. Es importante 
comprender los factores que influyen en la velocidad de penetración, lo que permite una estimación más precisa de los 
tiempos de parada y excavación y los costos operativos. En este estudio, los parámetros de entrada y salida incluyen la 
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resistencia a la compresión uniaxial (UCS), la resistencia a la tracción brasileña (BTS), el índice de pendiente máxima (PSI), la 
distancia entre los planos de debilidad (DPW), el ángulo alfa y la tasa de penetración (ROP) (m / h) en el túnel de agua de 
Queens utilizando la máquina de vectores de soporte. Los resultados mostraron que la predicción de la tasa de penetración 
para el método de la máquina de vectores de soporte (SVM) es R2 = 0.9678 y RMSE = 0.064778, según los resultados, la 
máquina de vectores de soporte (SVM) es efectiva Y tiene una alta precisión.  
Palabras Clave: TBM. Tasa de penetración. Máquina de vectores de soporte (SVM). 

 
 

INTRODUCTION 
 

Nowadays, in many major cities around the world, urban transport tunnels play an 
important role in human life, necessitating the use of modern tools such as tunnel boring 
machine to excavate and execute these projects (TARKOY, 1973; FARMER, GLOSSOP,1980; 
HASSANPOUR et al., 2009).  The speed and quality of excavating machines make them 
competitive with traditional methods (CASSINELLI et al, 1982; YAGIZ, KARAHAN, 2015). 
One of the important factors is TBM penetration rate (LISLERUD et al., 1983; ARMAGHANI 
et al.,2019). TBM penetration rate estimates can be used to reduce the risks associated with the 
costs of common investment in excavating operations (BIENIAWSKI et al., 2007; ZHAO et 
al., 2019). However, TBMs are sensitive to geological conditions such as fractures and cracks, 
tunneling is a high-risk industry that increases the risk with the use of mechanized tunnels 
(HASSANPOUR et al., 2009; HASSANPOUR et al., 2011; YAGIZ, KARAHAN, 2015). 
Estimating TBM penetration rate has a significant impact on controlling the time and cost of 
the project and choosing the excavating method (GONG, ZHAO, 2009; ADOKO et al., 2017; 
VERGARAA, SAROGLOU, 2017). The complexity of the reaction between rock mass and 
TBM makes it extremely difficult to estimate TBM penetration rate (KHADEMI HAMIDI et 
al., 2010; ZARE NAGHADEHI et al., 2018). The penetration rate is defined as the ratio of 
excavating distance to excavating time during a continuous excavating phase (YAGIZ, 2008; 
YAGIZ et al., 2018).  

Penetration rate models used in engineering can be divided into three categories: 
1. Experimental Models 2. Theory Models 3. Numerical models 
Experimental models are often obtained by analyzing data from tunnel projects 

(BAMFORD, 1984; BARTON, 2000), while theoretical models are obtained by performing 
laboratory tests and simulating reality in laboratories (INNAURATO, 1991; RIBACCHI, 
LEMBO-FAZIO, 2005; ARMETTI et al., 2018), Numerical models that have received much 
attention in recent years are a new and less expensive method that reflects the reality of using 
project records (AFRADI et al., 2019). 

 
METHODOLOGY 
 
Support Vector Machine 

 
Support Vector Machine (SVM) is a good and efficient classifier of the Kernel Methods 

branch of machine learning, which has been particularly well-known in recent years for 
classification, regression and pattern recognition issues (VAPNIK, 1995). Support Vector 
Machine (SVM) supervised learning methods. The benefits of Support Vector Machine (SVM) 
are relatively simple training and, unlike neural networks, do not get stuck in local maxims 
(VAPNIK, 1998). It also works well for large data sets. Support Vector Machine (SVM) has 
been used in various sciences such as engineering, medicine, agriculture, natural resources, 
accounting, management, civil, economics, natural resources, speech recognition, pattern 
recognition and so on (XU et al., 2019). Some of its applications include pilotless aircraft 
control, aircraft deflection tracking, welding quality analysis, computer quality analysis, 
chemical product design analysis, synthetic member design, organ transplant time optimization, 
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oil and gas exploration, voice recognition, instantaneous language translator, system Client 
Cash Processing Systems, Truck Brake Detection Systems, Drug Detection, Signature Review, 
Loan Risk Estimation, Capital Assessment, Market Forecasting, Energy Essentials Forecasting, 
Pharmaceutical Response Forecasting, Weather Forecasting, Document Inspection, Target 
Detection, Face Detection, Noise Prevention, Image Recognition, Signal Recognition, Sight 
Machinery, financial analysis, product optimization, stock management contracts, management 
of insurance funds, recognize letters and numbers, diagnosis, and so on (XU et al., 2019).There 
are several types of Support vector machine, such as integral Support Vector Machine, 
nonlinear Support Vector Machine vector machine, multi-class Support Vector Machine and 
fuzzy Support Vector Machine. Most approaches to achieve a system of intelligent behavior 
are based on components that automatically learn from past experiences. The development of 
these learning modes is the goal of knowledge known as machine learning. Over the past 
decade, researchers have made numerous advances in this area by successfully applying 
machine learning techniques in the tunneling industry (ZHANG et al., 2019).  Machine learning 
has been evolving in recent years and many new specialties are applying these principles in the 
tunneling industry. Among the various algorithms that exist in the field of machine learning, 
the support vector machine can be mentioned as one of the most well-known algorithms, used 
for classification and regression. In the tunneling industry, Ge et al. (2013), calculated TBM 
performance using least square support vector machine, Mahdevari et al. (2013), developed a 
model based on SVM algorithm for prediction of tunnel convergence during excavation, Zhang 
& Gao (2019), studied at SVM regression method in tunnel fires and more. Linear classification 
methods attempt to separate data by constructing a superstructure (which is a linear equation). 
support vector machine classification method, which is one of the linear classification methods, 
finds the best superstructure that separates the data of two classes with maximum distance for 
better understanding, Figure (1) shows an image of a two-class dataset that selects the best 
supercapacitor support vector machine for their separation. 
 

Figure1 - A superlattice with a maximum separator boundary with a separator boundary to 
sample data from two different classes. Specimens located at the borders are called support 

vectors 

 
Create a superconducting spacer by a support vector machine  

 
In this section we want to describe how to build a superconducting separator on a detailed 

example. A detailed illustration of how the superconducting separator is formed by the support 
vector machine is shown in Figure 2. 
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Figure 2 - Build a superstructure separator between two data layers in two-dimensional space 

 
 
First, consider a convex around the points of each class. In Figure 2, it is plotted around 

points of class-1 and points of class +1 convex shell. The line P is the line that represents the 
closest distance between two convex shells. h, which is actually the superconducting divider, is 
a line that halves P and is perpendicular to it. The main idea is to select a suitable separator. I 
mean a separator that has the greatest distance to the neighboring points of both floors. This 
answer actually has the largest boundary with points on two different floors and can be bordered 
by two parallel superstructures crossing at least one of the two floors. These vectors are called 
backup vectors. The mathematical formula of these two parallel superstructures forming the 
boundary of the separator is shown: 

 
 𝑤. 𝑥 − 𝑏 = 1 (1) 
   
 𝑤. 𝑥 − 𝑏 = −1 (2) 

 
The thing to note is that if the training data are linearly separated, two boundary 

superpowers can be selected so that no data is between them and then maximize the distance 
between these two parallel superpowers. Using the geometrical theorems, the distance of these 
two superstructures is 2 / | w |, So should | w | Minimize. The data points within the boundary 
area should also be avoided, with a mathematical constraint added to the formal definition. For 
each i, the following constraints are achieved that do not cross the border: 

 
 𝑤. 𝑥! − 𝑏 ≥ 1 (3) 
   
 𝑤. 𝑥! − 𝑏 ≤ −1 (4) 

 
The following limitation can be expressed as: 
 

 𝑐!(𝑤. 𝑥! 	– 	𝑏) ≥ 1, 1 ≤ 	𝑖	 ≤ 	𝑛 (5) 
 
Solve the issue in general 

 
The problem is to minimize the function f(x) subject to constraint g(x)=0. The condition 

required to x0 answer this question is as follows: 
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2
∂
∂x
5f(x) + αg(x):|"#"! = 0

g(x) = 0
 

(6) 

 
For several restrictions gi(x)=0: 
 

 
2
∂
∂x =

f(x) +> α$g$(x)
%

$#&
? |"#"! = 0

g$(x) = 0					for	i = 1,… ,m
 

(7) 

 
If the constraint is unequal, gi (x) ≤ 0  is  still the same problem except that αi  must be 

positive. In this case, if x0 is the solution to the optimization problem, then for every i = 1, ..., 
m there must be 0 such that x0 applies to: 

 
 

2
∂
∂x =

f(x) +> α$g$(x)
%

$#&
? |"#'"! = 0

g$(x) ≤ 0					for	i = 1,… ,m
 

(8) 

   
 f(x) +> α$g$(x)

%

$#&
 (9) 

 
The function is called Lagrangian. The slope of this function must be set to zero. 

 
Solve the main issue 

 
Minimize the issue  &

(
‖w‖( given the limitations 1- yi (wTxi + b) ≤ 0 for 𝑖 = 1,… , 𝑛 In 

this case, the Lagrangian function is: 
 

 
𝑙 =

1
2w

)w+	>α$(1 −	y$(w)x$ + 	b))
%

$#&

 
(10) 

 
It should be noted that ||w||2 = wTw by derivation	𝑙: 
 

 
𝑤 =>α$y$x$

%

$#&

 
(11) 

   
 

𝑤 +>α$(−	y$)x$ = 0
%

$#&

 
(12) 

   
 

>α$y$ = 0
%

$#&

 
(13) 

 
 
In this study, support vector machine was used to predict penetration rate of TBM. The 

settings used in SVM to predict the TBM penetration rate are as described in Table 1. 
 



AFRADI, A.; EBRAHIMABADI, A.; HALLAJIAN, T. 
PREDICTION OF TBM PENETRATION RATE USING SUPPORT VECTOR MACHIN 

 

Geosaberes, Fortaleza, v. 11, p. 467-479, 2020. 

472 

 

Table 1 - SVM design parameters in this study 
Model Kernel Degree    

 Radial Basis Function (RBF) 2 0.1 1000 0.5 
 

Case Study: The Queens Water Tunnel # 3, stage 2 
 
The Queens Water Tunnel # 3, stage 2 was constructed between 1997 and 2000. This 

section of the tunnel is approximately 7.5 km long and 7.06m in diameter beneath Brooklyn 
and Queens. The location of The Queens Water Tunnel No. 3, stage 2 as shown in Fig. 3. 
Descriptive statistic of database in Table 2 (SPSS, 2017). 

 
Table 2 - Descriptive statistic of database 

 UCS (MPa) BTS(MPa) PSI (kN/mm) DPW(m) Alpha angle (°) ROP(m/hr) 
N 151 151 151 151 151 151 
Minimum 118.3 6.7 25 .05 2 1.27 
Mean 150.053 9.550 34.58 1.0209 44.72 2.0441 
Maximum 199.7 11.4 58 2.00 89 3.07 
Geometric Mean 148.497 9.509 33.71 .7563 36.29 2.0131 
Harmonic Mean 147.021 9.466 32.99 .4526 23.85 1.9822 
Std. Deviation 22.1874 .8695 8.462 .64468 23.279 .35982 
Std. Error of Mean 1.8056 .0708 .689 .05246 1.894 .02928 
Variance 492.282 .756 71.605 .416 541.912 .129 

Source: Yagiz (2008). 
 

Figure 3 - The location of The Queens Water Tunnel No. 3, stage 2 

 
Source: Yagiz (2009). 
 
 
 
 
 

e C s
SVRe -
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MODELING STEPS  
 
Input and output parameters 

 
In this section we call data using MATLAB software (MATLAB, 2018), input and output 

parameters in Table 3. the database was analyzed through Support Vector Machine. 
 

Table 3 - Input and output parameters 

 
Evaluation criteria (R2 and RMSE) 
 
Coefficient of determination (R2) and Root Mean Square Error (RMSE) are the evaluation 

criteria in this study which is obtained from the following relationships: 
 

 
R( =

∑ (Xi −	XN)(Yi −	YN)*
$#&

P∑ (Xi − XN)(∑ (Yi − YN)(*
$#&

*
$#&

 
(14) 

   
 

			RMSE = T
1
N>(Xi − Yi)(

*

$#&

 

(15) 

 
Xi and Yi are the computational and observational values of the time step i, N is the 

number of time steps. XN	 and YN are the average of computational and observational values, 
respectively. 
 
Diagram Results 

 
As part of study, the database was analyzed through Support Vector Machine (SVM) 

modeling. Coefficient of determination (R2), Root Mean Square Error (RMSE), and the 
Support Vector Machine (SVM) distribution pattern for predicting ROP are shown in Figure 3. 
This graph represents the fitting line between the values predicted by SVM model with the best 
fit line y = x. 

Distribution diagram and fitting diagram of the measured Rate of Penetration (ROP) and 
the predicted Rate of Penetration (ROP) are shown in Figures 4 and 5, respectively. 

 
 
 
 
 
 
 
 

Input Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Peak 
Slope Index (PSI), Distance between Planes of Weakness (DPW), Alpha angle 

Output Rate of Penetration (ROP) (m/hr) 
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Figure 4 - Distribution diagram of the measured and the predicted Rate of Penetration (ROP) 

 
 

Figure 5 - Fitting diagram of the measured and the predicted Rate of Penetration (ROP) 

 
Regression analysis 

 
In this step, we analyze the type of regression using Excel software (Excel ,2019) by 

predicted and measured ROP. As you can see in the figure 6, linear regression is the most 
appropriate type. 
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Figure 6 - (a) Exponential; (b) Linear; (c) Logarithmic; (d) Power 
 

(a) 

 
 
 
 
 
 

(b) 

 
 
 
 
 
 
 
 
 

y = 0.5981e0.5925x

R² = 0.9453

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5

Exponential

y = 1.2267x - 0.4689
R² = 0.9678

0

0,5

1

1,5

2

2,5

3

3,5

0 0,5 1 1,5 2 2,5 3 3,5

Linear



AFRADI, A.; EBRAHIMABADI, A.; HALLAJIAN, T. 
PREDICTION OF TBM PENETRATION RATE USING SUPPORT VECTOR MACHIN 

 

Geosaberes, Fortaleza, v. 11, p. 467-479, 2020. 

476 

 

 
 

(c) 

 
 

 
 

(d) 

 
 
 
CONCLUSIONS 
 

The development of underground structures has increased significantly in recent years. 
Tunnel construction using TBM is an important method used in the tunneling industry. Timing 
is very important in tunneling projects. A project should be done in a timely manner, otherwise 
it may have undesirable consequences for the contractors. The time and cost of completing the 
project is estimated based on the performance of the tunneling machine. Penetration rate is one 
of the main parameters to check the performance of the machine in the project. There are 
various methods for predicting this important parameter, each of which has its own 
characteristics, based on parameters related to rock mass and machine parameters. The purpose 
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of the present study is to develop a model to estimate TBM penetration rate using support vector 
machine. Queens tunnel is selected as a case study and the proposed model is evaluated with 
its data. The coefficient of determination (R2) and Root Mean Square Error (RMSE) in this 
study were 0.96 and 0.06, respectively. Ultimately, it can be concluded that predictive model 
lead to acceptable results. 
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