Evaluation of the detection errors of heat focus estimated by the GOES Imager Sensor
Abstract
The negative impacts on the environment caused by fires represent one of the greatest environmental challenges of our time. The demand for products with greater accuracy in fire characterization and behavior has increased significantly in recent decades. In this regard, in relation to the importance of the systematization of fire products, as well as their significant use, the limitations related to the accuracy of information need to be remedied. The main objective of this work was to analyze the accuracy of the information contained in the product WFABBA / GOES, of heat focus detection. It was found that overestimation of the outbreaks in all the years of the analyzed series suggests that this result can be based on other research regarding the relationship between the errors found and their impacts on the emission inventories of gases and aerosols from biomass burning.
References
AB'SABER, Aziz Nacib. Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos períodos glaciais quaternários. Universidade de São Paulo/Instituto de Geografia, 1977.
BARBOSA, P. M.; PEREIRA, J. M. C.; GRÉGOIRE, J. M. Compositing criteria for burned area assessment using multitemporal low resolution satellite data. Remote Sensing of Environment, New York, v. 65, n. 1, p. 38-49, 1998.
BARTSCH A., BALTZER, H. & GEORGE, C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environment Research Letters, v. 4, p. 1 – 9. 2009.
BASTARRIKA, A., CHUVIECO, E., MARTÍN, M.P. Automatic Burned Land Mapping From MODIS Time Series Images: Assessment in Mediterranean Ecosystems. IEEE Transactions on Geoscience and Remote Sensing, v. 49, n. 9, p. 3401-3413, 2011.
CHUVIECO, E. et al. Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sensing of Environment, New York, v. 94, n. 4, p. 450-465, 2005.
CHUVIECO, E.; VENTURA, G.; MARTÍN, M. P. AVHRR multitemporal compositing techniques for burned land mapping. International Journal of Remote Sensing, v. 26, n.5, p.1013-1018, 2005.
DE SOUZA, P. A., Sismanoglu, R. A., Longo, K. M., Maurano, L. E., Recuero, F. S., Setzer, A. W., & Yoshida, M. C. (2003, August). Avanços no monitoramento de queimadas realizado no INPE SETZER. In: XIII Congresso Brasileiro de Meteorologia, 2003.
FREITAS, S. R., Longo, K. M., Dias, M. A. F., & Dias, P. L. Emissões de queimadas em ecossistemas da América do Sul. Estudos Avançados, v. 19, n. 53, p. 167-185, 2005.
GIGLIO, L; KENDALL, J. D. Application of the Dozier retrieval to wildfire characterization: a sensitivity analysis. Remote Sensing of Environment, v. 77, n. 1, p. 34-49, 2001.
GU, J.; LI, X.; HUANG, C.; OKIN, G. S. A simplified data assimilation method for reconstructing time-series MODIS NDVI data. Advances in Space Research, v. 44, n. 4, p. 501-509, 2009.
KAUFMAN, Y. J.; HOLBEN, B. N. Hemispherical backscattering by biomass burning and sulfate particles derived from sky measurements. Journal of Geophysical Research: Atmospheres, v. 101, n. D14, p. 19433-19445, 1996.
KOLTUNOV, A.; USTIN, S. L.; PRINS, Elaine M. On timeliness and accuracy of wildfire detection by the GOES WF-ABBA algorithm over California during the 2006 fire season. Remote sensing of environment, v. 127, p. 194-209, 2012.
MIGUEL, S. M.; HUESCA, M.; GONZÁLEZ-ALONSO, F. Modis reflectance and active fire data for burn mapping and assessment at regional level. Ecological Modelling, v. 221, p. 67–74, 2010.
NEPSTAD, Daniel C.; ALENCAR, Ane A.; MOREIRA, Adriana G. A floresta em chamas: origens, impactos e prevenção de fogo na Amazônia. Brasília: Programa Piloto para a Proteção das Florestas Tropicais do Brasil, 1999.
PRINS, E. M; C. C. Schmidt, J. M. Feltz, J. S. Reid, D. L. Westphal, and K. Richardson, A two-year analysis of fire activity in the western hemisphere as observed with the goes wildfire automated biomass burning algorithm...Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, P2.28, 2003.
PRINS, E. M.; J. Schmetz, L. Flynn, D. Hillger, and J. Feltz. Overview of current and future diurnal active fire monitoring using a suite of international geostationary satellites. Global and Regional Vegetation Monitoring from Space: Planning a Coordinated International Effort, p. 145-170, 2001.
PRINS, E. M.; MENZEL, W. Paul. Geostationary satellite detection of bio mass burning in South America. International Journal of Remote Sensing, v. 13, n. 15, p. 2783-2799, 1992.
SCHMIDT, C. C.; PRINS, E. M. GOES wildfire ABBA applications in the western hemisphere. In: Second International Wildland Fire Ecology and Fire Management Congress and Fifth Symposium on Fire and Forest Meteorology, 16–20, 2003.
WOOSTER, M. J.; ZHUKOV, B.; OERTEL, D. Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, v. 86, n. 1, p. 83-107, 2003.
ZHANG, Xiaoyang; KONDRAGUNTA, Shobha. Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product. Remote Sensing of Environment, v. 112, n. 6, p. 2886-2897, 2008.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy Proposal for Free Access Journals
Authors who publish in this journal agree to the following terms:
a. Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
b. Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg publish in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
c. Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase the impact and The citation of published work (See The Effect of Free Access).