The IIC deposit area to the east of the Bafq region exposes rocks that comprise the part of the Central Iran continental terrane. The IIC deposit iron orebodies are magmatic-related hydrothermal deposits that, when considered collectively display a vertical zonation from high-temperature, magmatic ± hydrothermal deposits emplaced at moderate depths (~1–2 km) to magnetite-dominant IOCG deposits emplaced at an even shallower subvolcanic level. The shallowest parts of these systems include near-surface, iron oxide-only replacement deposits, surficial epithermal sediment-hosted replacement deposits, and synsedimentary (exhalative) ironstone deposits. Alteration associated with the IOCG mineralizing system within the host volcanic, plutonic, and sedimentary rocks dominantly produced potassic with lesser amounts of calcic- and sodic-rich mineral assemblages. Our data suggest that hydrothermal magmatic fluids contributed to formation of the primary sodic and calcic alterations. The aim of this study is to delineate and recognize the different iron mineralized zones, based on surface and subsurface study. However, the data do not discriminate between a magmatic-hydrothermal source fluids resolved from Fe-rich immiscible liquid or Fe-rich silicate magma. Iron ores, occurring as massive-type and vein-type bodies are chemically different. Minor pyrite occurs as a late phase in the iron ores. The REE patterns of the mineralized metasomatites show LREE enrichment and strong Eu negative anomalies. The strong negative Eu anomaly probably indicates near-surface fractionation of alkali rhyolites involving feldspars. Field observations, ore mineral and alteration assemblages, coupled with lithogeochemical data suggest that an evolving fluid from magmatic dominated to surficial brine-rich fluid has contributed to the formation of the IIC deposit.

Author Biographies

Mohammad Lotfi, Islamic Azad University, Iran

Department of Earth Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.

Mansoureh Shirnavard Shirazi, Islamic Azad University, Iran

Department of Earth Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Nima Nezafati, Islamic Azad University, Iran

Department of Earth Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Arash Gourabjeripour, Islamic Azad University, Iran

Department of Natural Resources, Myianeh Branch, Islamic Azad University, Miyaneh, Iran.


ATAPOUR, H., AFTABİ, A )2012(. Rapitan-type banded iron formation at Hormouz Island, Iran: geological survey of Iran. The 30th Symposium, Programme with Abstracts (in Persian) With English Abstract.

ALAVİ , M (1991). Tectonic map of the Middle East (scale 1:5, 000, 000). Geological Survey of Iran.

BARBARİN, B )1999.( A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, Volume 46, Issue 3, March 1999, Pages 605–626.

BERBERİAN, F., BERBERİAN, M.)1981.( Tectono-plutonic episodes in Iran, In: GUPTA, H.K., and DELANY, F.M., editors, Zagros-Hindu Kush-Himalaya geodynamic evolution: American Geophysical Union Geodynamic Series, v. 3, p. 5-32.

BARTON, M.D., JOHNSON, D.A) 2000(. Alternative brine sources for Fe-oxide (Cu–Au) systems: Implications for hydrothermal alteration and metals. In: PORTER, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Australian Mineral Foundation, Glenside, SA, pp. 43–60.

BARTON, M.D., JOHNSON, D.A) 2004(. Footprints of Fe oxide (-Cu- Au) systems: University of Western Australia Special Publication, v. 33, p. 112-116.

BARTON, M. D. & JOHNSON, D. A (1996). Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24, 259-262.

BONYADİ, Z., DAVİDSON, G.J.,MEHRABİ, B.,MEFFRE, S., GHAZBAN, F) 2011(. Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide– apatite deposit, the Bafq district, Iran, insights from paragenesis and geochemistry . Chem. Geol. 281, 253–269.

BROMAN, C., NYSTRÖM, J.O., HENRİQUEZ, F., ELFMAN, M) 1999( . Fluid inclusions in magnetiteapatite ore from a cooling magmatic system at El Laco, Chile . GFF 121, 253–267.

CHAPPELL, B. W., WHİTE, A. J. R) 1992(. I – and S –type granites in the Lachlan fold belt. Royal Society of Edinburgh Transaction Earth Sciences, Vol. 83, pp. 1-26.

CHAPPELL, B.J. WHİTE, A.J.R) 1974(. Two contrasting granite types. Pacific Geology. Vol 8. pp.173-174.

CORNELL, R. M., SCHWERTMANN, U) 2003(. The iron oxides. 2nd. Wiley-VCH; 613 p.

CORRİVEAU, L., WİLLİAMS, P.J., MUMİN, A.H) 2010A(. Alteration vectors to IOCG mineralization from uncharted terranes to deposits: Geological Association of Canada Short Course Notes, v. 20, p. 89–110.

CORRİVEAU, L) 2006(. Iron oxide copper-gold (±Ag±Nb±P±REE±U) Deposits: A Canadian perspective. Natural Resources Canada, Geological Survey of Canada.

COX, G.M., HALVERSON, G.M., MİNARİK, W.G., LE, H.D.P., MACDONALD, F.A., BELLEFROİD, E.J., STRAUSS, J.V) 2013(. Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem. Geol. 362, 232–249.

COX, K.G., BELL, J.D., PANKHURST, R. J) 1979(. The Interpretation of Igneous Rocks. George Allen & Unwin.

CUNEY, M., EMETZ, A., MERCADİER, J., MYKCHAYLOV, V., SHUNKO, V., YUSLENKO, A) 2012(. Uranium deposits associated with Na-metasomatism from central Ukraine: a review of some of the major deposits and genetic constraints. Ore Geol. Rev. 44, 82–106.

DALİRAN, F., STOSCH, G., WİLİAMS, P., (2007). Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and apatitites‘ of the Bafgh district, central-east Iran. In: Stanely C. J. eds. Digging Deeper, pp. 1501_1504. Proceedings 9th Biennial SGA Meeting Dublin, Ireland Ficher, R. P. 1950, Uranium Bearing Sandeston Deposits of the Colorado Plateau: Economic Geology, v. 45, p. 1-11.

DALİRAN, F) 2002(. Kiruna-type iron oxide–apatite ores and -apatitites‖ of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. A Global perspective 2 pp. 303–320.

DALİRAN, F) 1990(. The magnetite–apatite deposit of Mishdovan, Eastcentral Iran, an alkaline rhyolite hosted-Kiruna type‖ occurrence in the Bafq metallotect. Mineralogic, Petrographic and Geochemical Study of the Ores and the Host RocksHeidelberger Geowiss Abh 37 (248 pp).

DAY, WARREN C, SLACK, JOHN F., AYUSO, ROBERT A, SEEGER, CHERYL. M (2016). Regional Geologic and Petrologic Framework for Iron Oxide ± Apatite ± Rare Earth Element and Iron Oxide Copper-Gold Deposits of the Mesoproterozoic St. Francois Mountains Terrane, Southeast Missouri, USA, Economic Geology, v. 111, pp. 1825–1858.

DOUVİLLE, E., BİENVENU, P., LUC, C.J., DONVAL, J.P., FOUQUET, Y., APPRİOU, P., GAMO, T)1999(. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta 63, 627–643.

DUPUİS, C., AND BEAUDOİN, G (2011). Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types: Mineralium Deposita, v. 46, p. 319– 335.

FÖRSTER, H., JAFARZADEH, A) 1994(. The Bafq mining district in central Iran-a highly mineralized Infracambrian volcanic field. Econ. Geol. 89, 1697–1721.

FRİETSCH, R., (1978). On the magmatic origin of iron ores of the Kiruna type. Economic Geology., Vol. 73, pp. 478–485.

FRİETSCH, R., PERDAHL, J.A) 1995(. Rare earth elements in apatite and magnetite in Kirunatyp iron ores and some other iron ore types. Ore Geol. Rev. 9, 489–510.

GALLEY, A.G (2003). Composite synvolcanic intrusions associated with Precambrian VMS hydrothermal systems, Mineralium Deposita 38, 443-473.

GİFKİNS, C.C.; HERRMANN, W.; LARGE, R.R) 2005(. Altered Volcanic Rocks: A Guide to Description and Interpretation; Centre for Ore Deposit Research, University of Tasmania: Hobart, Australia.

GOAD, R.E., MUMİN, A.H., AND MULLİGAN, D.L (1996). A report on the geology of the JBG1-7 claims, Marian River area, Mackenzie (south) district, Northwest Territories, Canada: NWT Geoscience Office, NORMIN Assessment Report 083776, 89 p.

GROVES, D.L., BİERLEİN, F.P., MEİNERT, L.D., AND HİTZMAN, M.W (2010). Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits: Economic Geology, v. 105, p. 641–654.

HAGHİPOUR, A) 1977(. Geological Map of the Biabanak-Bafq Area (scale 1:500, 000). Geological Survey of Iran.

HAHN, G., PFLUG, H. D) 1980(. Ein neuer Medusen-Fundausdem Jung prikambrium von Zentral-Iran: Senckenbergiana Lethaea, 60, 449-461 (with English abstract).

HARLOV, D.E., ANDERSSON, U.B., FÖRSTER, H.J., NYSTRÖM, J.O., DULSKİ, P., BROMAN, C) 2002(. Apatite monazite relations in the Kiirunavaara magnetite-apatite ore. northern Sweden. Chem. Geol. 191, 47–72.

HAYNES, D. W., CROSS, K. C., BİLLS, R. T., & REED, M. H (1995). Olympic Dam ore genesis: A fluid-mixing model. Economic Geology 90, 281-307.

HENDERSON, P )1989(. Rare earth element geochemistry. Elsevier. p. 510.

HEİDARİAN, H.; ALİREZAEİ, S.; LENTZ, D.R) 2017(. Chadormalu Kiruna-type magnetite-apatite deposit, Bafgh district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Review 83, 43-62.

HEIDARIAN, H., LENTZ, D.R ALIREZAEI, S., MCFARLANE, C.R. M., PEIGHAMBARI, S) 2018(. Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafgh Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology. Minerals 2018, 8, 87.

HİLDEBRAND, R.S) 1986(. Kiruna-type deposits: their origin and relationship to intermediate subvolcanic plutons in the Great Bear Magmatic Zone, northwest Canada. Econ. Geol. 81, 640–659.

HİTZMAN, M.W. AND VALENTA, R.K (2005). Uranium in iron oxide- copper-gold (IOCG) systems: Economic Geology, v. 100, p. 1657-1661.

HİTZMAN, M. W) 2000(. Iron oxide–Cu–Au deposits: what, where, when, and why? In: Porter TM (ed) Hydrothermal iron oxide– copper–gold and related deposits—a global perspective. PGC Publishing, Vol. 1. pp 9–25.

HİTZMAN, M. W) 1992(. Olympic Dam type Fe-Cu-REE deposits - a preliminary model and an example from the Proterozoic of Yukon Territory, Canada [abs.]. International Geol. Congress, Abstracts, Kyoto, 3- 740.

HUMPHRİS, S.E) 1989(. The mobility of the rare earh elements in the crust. In: Henderson P (ed) Rare earth element geochemistry. Elsevier Science Publishers B.V., Amsterdam, pp 317–342

HURAİ,V., SİMON,K.,WİECHERT, U., HOEFS, J., KONECNY, P., HURAİOVA,M., PİRONON, J., LİPKA,J) 1998(. Immiscible separation of metalliferous Fe/ Tioxide melts from fractionating alkali basalt: P- T-fO2 conditions and two-liquid elemental partitioning. ContribMineral Petrol 133:12–29.

IRVİNE, T. N., AND BARAGAR, W. R. A) 1971(. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences., Vol. 8, pp. 523–548.

JAMİ, M., DUNLOP, A.C.,COHEN, D.R) 2007(. Fluid inclusion and stable isotope study of the Esfordi apatite- magnetite deposit, Central Iran. Econ. Geol., 102, 1111–1128.

JAMİ, M) 2006(. Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran. Unpublished PhD Thesis, The University of New South Wales, Australia.

KLİNKHAMMER, G.P., ELDERFİELD, H., EDMOND, J.M., MİTRA, A (1994). Geochemical implications of rare earth element patterns in hydrothermal fluids from midocean ridges. Geochim. Cosmochim. Acta 58, 5105–5113.

LENTZ, D.R) 1998(. Petrogenetic and geodynamic implications of extensional regimes in the Phanerozoic subduction zones and their relationship to VMS-forming systems. Ore Geol. Rev. 12, 289–327.

LOTTERMOSER, B.G) 1992(. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews., Vol. 7, Issue 1, pp 25- 41.

MARCHİG, V.; GUNDLACH, H.; MÖLLER, P.; SCHLEY, F) 1982(. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediment. Mar. Geol. 50, 241–256.

MARSCHİK, R.; LEVEİLLE, R.A.; MARTİN, W) 2000(. La Candelaria and the Punta del Cobre district, Chile: early Cretaceous iron-oxide Cu– Au(–Zn–Ag) mineralization. In: PORTER, T.M. (Ed.), Hydrothermal Iron Oxide Cooper-Gold and Related Deposits: A Global Perspective. Austral Miner Fund, Adelaide, pp. 163–176.

MATHİEU, L) 2018(. Quantifying Hydrothermal Alteration: A Review of Methods. Geosciences 2018,8,245.

MOHSENİ, S.; AFTABİ, A) 2015(. Structural, textural, geochemical and isotopic signatures of synglaciogenic Neoproterozoic banded iron formations (BIFs) at Bafq mining district (BMD), Central Iran: The possible Ediacaran missing link of BIFs in Tethyan metallogeny. Ore Geology Reviews. OREGEO 1525.

MOHSENİ, S.; AFTABİ, A) 2007(. Investigation on the Rapitan banded iron formation and mineralization in central Iranian iron ore field: Unpublished M. Sc. thesis, Shahid Bahonar University of kerman, 284 P (in Persian).

MOKHTARİ, M.A.A., Hosseinzadeh, G., Emami, M.H) 2013(. Genesis of iron–apatite ores in Posht-e-Badam Block (Central Iran), using REE geochemistry. J. Earth Sci. Syst. 122, 795–807.

MONTREUİL, J. F., CORRİVEAU, L., POTTER, E.G) 2015(. Formation of albititehosted uranium within IOCG systems: The Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada: Mineralium Deposita, v. 50, p. 293–325.

MUMİN, A.H., GOAD, R.E.; MULLİGAN, D.L (1996). A report on the geology of the Treasure (F49508), Island 1 (F51395), Island 2 (F51396), Island 3 (F51397), and Island 4 (F49511) claims, Marian River area, Mackenzie (south) district, Northwest Territories, Canada: NWT Geoscience Office, NORMIN Assessment Report 083776, 69 p.

NASLUND, H.R., AGUİRRE, R., DOBBS, F.M., HENRİQUEZ, F., AND NYSTRÖM, J.O) 2000.(. The origin, emplacement, and eruption of ore magmas: Proceedings of IX Congreso Geologico Chileno, Actas, v. 2, p. 135– 139.

NYSTRÖM, J.O.,HENRİQUEZ, F) 1994(. Magmatic features of iron ores of the Kiruna type inChile and Sweden: ore textures and magnetite geochemistry. Econ. Geol. 89, 820–839.

NISCO )1980(. Result of search and valuation works at magnetic anomalies of the Bafgh iron ore region during 1976- 1979, Unpubl Rept, National Iranian Steel Corporation, 260 p.

PARAK, T )1975(. Kiruna iron ores are not intrusive-magmatic ores of the Kiruna type‘. Econ. Geol. 70, 1242– 1258.

PECOİTS, E) 2010(. Ediacaran iron formations and carbonates of Uruguay paleooceanographic, paleoclimatic and paleobiologic implications. Ph.D thesis, University of Aberta, 237 p.

PERRİNG, C. S., POLLARD, P. J., DONG, G., NUNN, A. J., & BLAKE, K. L) 2000(. The Lightening Creek sill complex, Cloncurry district, northwest Queensland: A source of fluids for Fe o xide Cu-Au mineralization and sodic-calcic alteration. Economic Geology 95, 1067-1090.

PHİLLİPS, G.N.; POWELL, R) 2010(. Formation of gold deposits: A metamorphic devolatilization model. J. Metamorph. Geol. 2010, 28, 689–718.

PİLSPANEN, R., ALAPİETİ, T) 1977(. Uralitization an example from Kuusamo,Finland . Bull. Geol. Soc. Finland 49, 39- 46.

POLLARD, P. J., MARK, G., & MİTCHELL, L) 1998(. Geochemistry of post-1540 Ma granites in the Cloncurry district. Economic Geology 93, 1330-1344.

PORTER, T.M) 2010(. Current understanding of iron oxide associated-alkali altered mineralised systems: Part 1—an overview; Part 2—a review, in Porter, T.M., ed., Hydrothermal iron oxide copper-gold & related deposits: A global perspective: Adelaide, Australia, Porter Geoscience Consultancy Publishing, v. 3, p. 5–106.

RAMEZANİ, J., TUCKER. R.D) 2003(. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Amer. J. Sci., 303, 622–665.

RAMEZANİ, J (1997). Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand area, central Iran: Ph.D. thesis, Washington University, St. Louis, Missouri, 416 p.

RAY, G.E., DİCK, L.A) 2002(. The Productora deposit in north-central Chile: an example of an intrusion-related Candelaria type Fe-Cu-Au hydrothermal system. In: PORTER, T.M. (Ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective PGC Publishing, Adelaide, pp. 131–151 2.

ROBB, L) 2005(. Introduction to ore-forming processes. Blackwell publishing.

ROEDDER, P.L., MACARTHUR, D., MA, X.-P., PALMER, G.R., MARİANO, A.N) 1987(. Cathodoluminescence and microprobe study of rare-earth elements in apatite. Amer. Mineral. 72, 801–811.

ROLLİNSON, H. R) 1993(. Using geochemical data: evaluation, presentation, interpretation. Longman Publisher.

SABET, A., TALAB, M., ALİNİA, F., GHANNADPOUR, S., HEZARKHANİ, A) 2015(. Geology, geochemistry, and some genetic discussion of the Chador-Malu iron oxide-apatite deposit, Bafq District,Central Iran. Saudi Society for Geosciences 2015.

SADEGHİ, B) 2012(. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122 (2012) 9–19.

SAMANİ, B) 1993(. Saghand Formation, a Riftogenic Unit of Upper Precambrian in Central Iran. Geoscience Scientific Quarterly Journalof Geological Survay of Iran, 2, 32-45. (In Farsi with English Abstract).

SANGSTER, D.F) 2003(. The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead-zinc deposits: Field and laboratory evidence. Miner. Depos. 2002, 37, 149–157.

SİLLİTOE, R.H) 2003(. Iron oxide–copper–gold deposits: an Andean view. Miner. Deposita 38, 787–812.

SİLLİTOE, R.H., BURROWS, D.R) 2002(. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ. Geol. 97, 1101–1109.

SHELLY, D) 1993(. Microscopic study of Igneous and Metamorphic rock. Champan and Hall, London,p: 184.

SHAND, S. J) 1943(. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite . New York: John Wiley & Sons.

SKİRROW, R. G) 1999(. Proterozoic Cu-Au-Fe mineral systems in Australia: filtering key components in exploration models. In: STANLEY, C. J. et al. (eds.). Mineral Deposits. Processes to Processing. Balkema, Rotterdam, 1361-1364.

STÖCKLİN, J) 1971(. Stratigraphic Lexicon of Iran; Part 1. Geological Survey of Iran, Tehran.

TAGHİPOUR, S., KANANİAN, A., SOMARİN, A.K) 2013(. Mineral chemistry and alteration paragenesis of the Choghart iron oxide–apatite occurrence, Bafq district, Central Iran. Neues Jb. Geol. Paläontol. Abh. 269, 221–240.

TAGHİPOUR, S., KANANİAN, A., MACKİZADEH, M.A., SOMARİN, A.K) 2015(. Skarn mineral assemblages in the Esfordi iron oxide–apatite deposit, Bafq district, Central Iran. Arab. J. Geosci. 8, 2967–2981.

TİTAYEVA, N.A) 1994(. Nuclear geochemistry, CRC Presses, p. 304.

TRELOAR, P.J., COLLEY, H) 1996(. Variations in F and Cl contents in apatites from magnetiteapatite ores in northern Chile, and their ore-genetic implications. Min. Mag. 60, 285–301.

TORAB, F )2008(. Geochemistry and metallogeny of magnetite- apatite deposits of the Bafq Mining District, Central Iran. Unpublished PhD Thesis, Clausthal University of Technology, Germany.

TORAB, F.M., LEHMANN, B) 2007(. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology: Min. Mag., v. 71, p. 347–363.

WHİTNEY, PHİLİP R., OLMSTED, JAMES F) 1998(. Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA, Geochimica et Cosmochimica Acta Volume 62, Issue 17, September 1998, Pages 2965–2977.

WİLLİAMS, P.J., BARTON, M.D., FONTBOTÉ, L., DE HALLER, A., JOHNSON, D.A., MARK, G., MARSCHİK, R., OLİVER, N.H.S) 2005(. Iron-oxide–copper–gold deposits: geology, space–time distribution, and possible modes of origin. Economic Geology, pp. 371–406 (100th Anniversary Volume).

WYBORN, L. A. I) 1998(. Younger ca. 1500 Ma granites of the Williams and Naraku batholiths, Cloncurry district, eastern Mt Isa Inlier: geochemistry, origin, metallogenic significance an exploration indicators. Australian Journal of Earth Sciences 45, 397-411.
How to Cite
LOTFI, Mohammad et al. MINERALOGY AND GEOCHEMISTRY STUDY OF REE MINERALS IN HOST ROCKS IN IIC IRON DEPOSIT, BAFGH MINERAL AREA, CENTRAL IRAN. Geosaberes, Fortaleza, v. 11, p. 51 - 75, jan. 2020. ISSN 2178-0463. Available at: <http://geosaberes.ufc.br/geosaberes/article/view/909>. Date accessed: 03 june 2020. doi: https://doi.org/10.26895/geosaberes.v11i0.909.